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Summary 

F’ormal charge distributions in, and the electric dipole moments of, a few 
simple organogermanium compounds have been evaluated by the method of 
R.P. Smith et al. [J. Amer. Chem: Sec., 73(1951) 22633 _ The’ difference be- 
tween the experiment& and calculated moments in the case of alkylhaloger- 
manes is explained in terms of the p&--d, back bonding effect outweighing 
the electron releasing effect. In unsaturated compounds, the differences are 
attributed to possible mesmeric effects involving the expansion of the ger- 
manium valence shell. 

Introduction 

In many organogermanium compounds, the shortening of the Ge-X bond- 
{where X is a n-electron donor group), inferred from various physical studies 
[l--5], has been attributed to pn -d, back bonding. On the’other h.and,,dipole 
moment studies on alkylgermanes have substantiated the view that alkyl groups 
release electrons more readily towards germanium than towards carbon or SW 
con [ 7,9]. 1x1 this paper, the charge distribution and the dipole moments of a 
few organogermaniurn compounds have been theoretically evaluated using the 
scheme of Smith et al. [lo], and compared with the experirirental‘data with a-. I 
view to assessing the nature-of electromeric effects operating in- these molecules, 
The dipole moments and structure of org~oge~~i~ compounds are of-con- 
siderable interest since relatively little is knoti about them. 

; 

Calculation r ‘. 
‘_ 

The method of Smith et al. [IO] was used. The parameters used.for the 
evaluation of the formal charge distribution are listed in Table 1. The charge- 
distributions for.#e various organogermanium comptiunds are given in Table.2; 
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MOMENTS 
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.&la -~ .__. &a 

.<a+) 
+l3. Bonddistance 

._ w 

zi3 
0.13' 0.00 1.090 

- 0.71 
c;c .:. &+:,18 

-1.49. 1.762. 

;g k 1_,jjo 

1 

1.541 
.’ c=c CLCC = 0.00 1.337 

czz -. #3,c= 2.340 1.204 
H--Ge 0.053 0.00 1.530 
CI-Gf! 0.267 

1 

-1.146 2.210 

c-c%. 
J3g?=o.500 

i3c,=o.200 
qGe=0.456 1.992 

while the calculated and the experimental values are presented in Table 3. A 
Zero Vale is chosen fofyHGe in d cases. 

Discussion 

Examination of Table 3 reveals that in the case of alkylhalogermanes, 
substitutjon of chlorine for the alkyl group gives rise to a change in direction 
of the difference between the calculated and the observed moments, this being 
from +0.14.to -0.15.D from MezGeClz to MeGeCl,. In simple halogermanes 
both the electron releasing effect of the alkyl group and the pn- d, back bond- 
ing effect contribute to the observed moment. The fact that the calculated mo- 
ments are higher t&n the experimental values, suggests that the pi+, effect 
outweighs the other effect. But in the case of gem-alkyhmlogermanes, the cal- 
culated moments are lower than the observed moments. This is probably due to 
the fact that the R&e group is much more polarizable than the HzO, H2Si or 
R& groups. This suggests an increased contribution of the structure H+C=Ge-in 
dia&yhiihalogern&es. This is in line with the observations of Curran et al. 114 3 
in the case-of dihalodialkylsilanes: 

The, difference between the calculated and the experimental values in the 
ca&e of~dichlorod&nethyl- and trichloromethyl-germanes (+0.14 and -0.15 D, 
respectively) can be attributed to the observation that a more electronegative 
outer gioup enhances the electronegativity of the central atom and hence decrea- 
ses the effective radius [i53. Such substitutions must be expected to reduce the 
polar& of the m&a.J~halogen bond. This is also in qualitative agreement with 
Gordy’s‘expression-for.elecQonegativity and that successive substitutions of 
halogexrdecrease the effective radius of the central atom [16,17]. 

:. In the car&of Me&eCHeCHCJ and Cl,GeCH=CHCl the presence of geo- 
metz$cal isdmem. precludes an assessment of the above effects. For Me,GeCl= 

.;$!H2, zi mesomeric~effect of the type shown: 
_R< ti/H. -. 

+c?c.~ i:... --_ -: .... -. : 
_q ,:_-\H_$ j-. .; .._ -;. f.y __. 1. 1. ;. . . ,- : .. 

_C@ .a&&ib for-the fact: that the experrmentai value is lower than that calculated 
‘.(Table.3);-:-.- ..’ . ..’ .. _ 

.‘. _ 
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_...:TABLE3-‘._;‘: -: :.. : ..- ..:J . .~ ._ : ._ 

--. .CALCqATEh AND OB&V& &MBNTS I?& SC&B CRGANCGBRMANIU&f C~MpC~D$ . . 
,:; -iE&i&nti v&es a& t+en &on; tic&&m*s ta& [lx] ). : ._. 

. 
&&~un& -_‘.;.--- ::_. 

-. 
~... .Dipolemdment (9) D&s-“talc. 

: Obs. C& 

-HaGeC1. :--I . . 2.06 

I. H2GeCl2 2.20 2.09 +0.11 
MeGee 0.64 

_. I+@=H2~ 0.76 -0.59 +0.17 

MegGeH 0.67 0.55 i-O.12 

_MeGeClg 2.63 2.79 -0.16 
’ ?$e2GeCl~ 3.11 2.97 a.14 

Me3GeCl 2.90 3.21 -0.31 
EtGeClJ 2.87 2.92 -0.05 
Et2G&lZ= 3.19 3.12 i-o.07 

3.48 

-3.84 

Me3GeCHZCl 1.85 2.03 -0.18 
Cl3GeCH2CX 2.10 2.32 -0.22 
Me3GeCH=CHCP 1.86 1.98 

2.20 

Me3G&Cl=CH2 1.82 2.28 -0.46 
:Cl3GeCH=CClH= 1.86 0.72 

3.87 

R3GeCZCFI 0.14 0.84 -0.70 

Me3GeCSZH 0.79 0.14 +0.65 

o Rotational isomers are also considered. 

In the case of germylacetylene, the difference between the calcuiated and 
the experimental moments (-0.70 D) can possibly be attributed to a mesomeric 
effect as follows: 

From microwave studies, Thomas et al. [18] have suggested that a meso- 
n&c effect of this type operates in this molecule. Trimethylgermylacetylene 
presents an interesting case. Here the difference between the calculated and ex- 
perimental moments is positive, and the net moment acts in a direction opposite 
to that in the case of germylacetylene. A possible explanation is that a hypercon- 
jugative effect arising from the threk methyl groups probebly outweighs other 
probable .eIectromeric ~shifts. One of the possible hyperconjugative structures is: 
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